FORMATIVE ASSESSMENTS THAT SOLIDIFY STUDENT LEARNING

MARILYNE STAINS

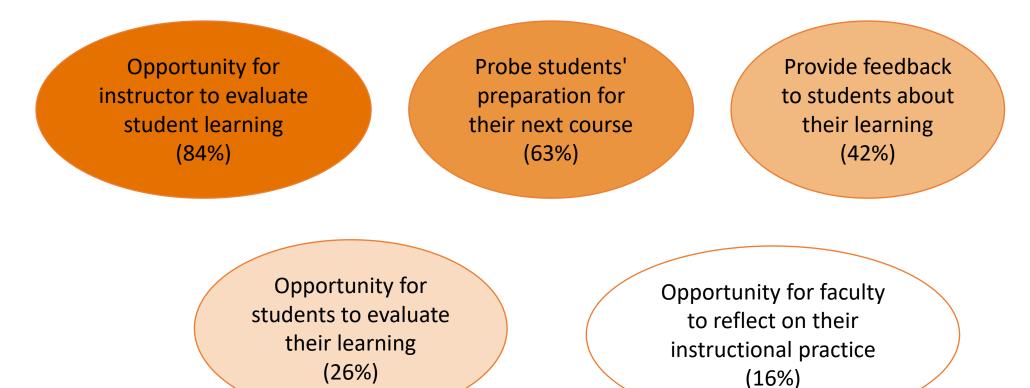
ASSOCIATE PROFESSOR DEPARTMENT OF CHEMISTRY

Learning Goals

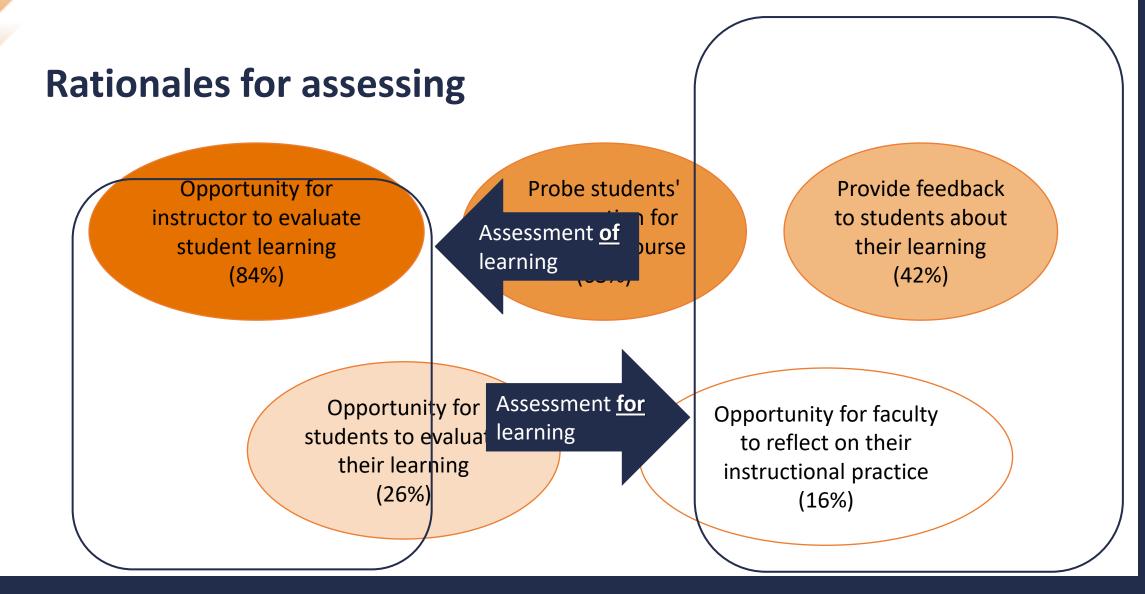
By the end of this session, you will:

be able to describe and implement a formative assessment strategy

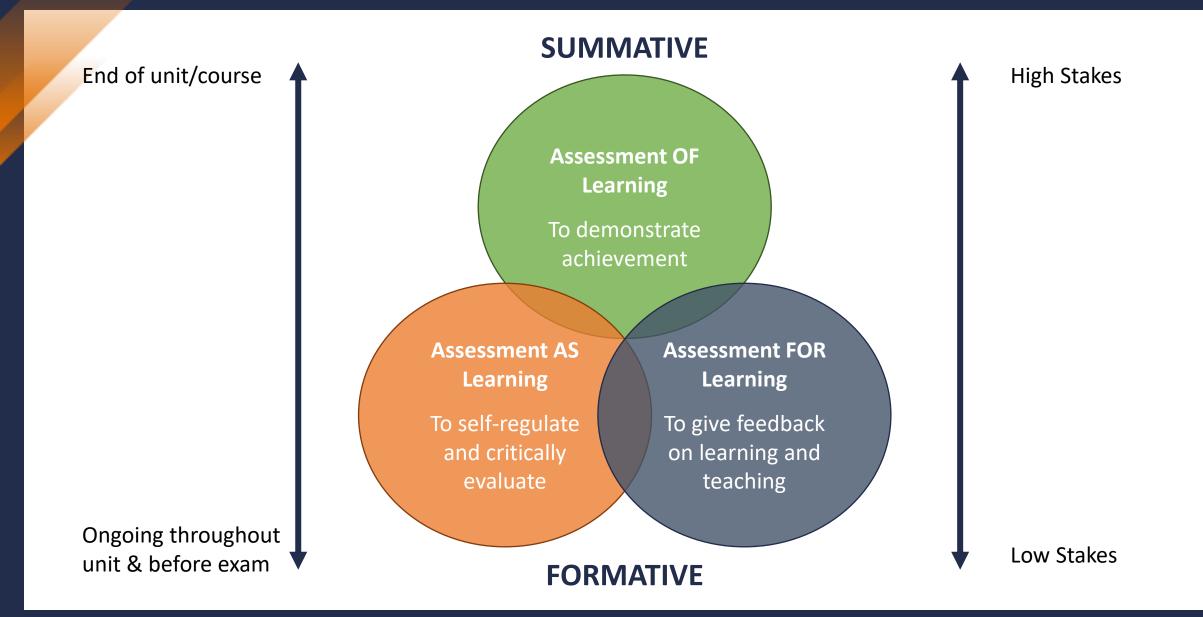
be able to **describe the benefits of this strategy** from the students and instructor's perspectives


know where to find resources to help implement this assessment strategy

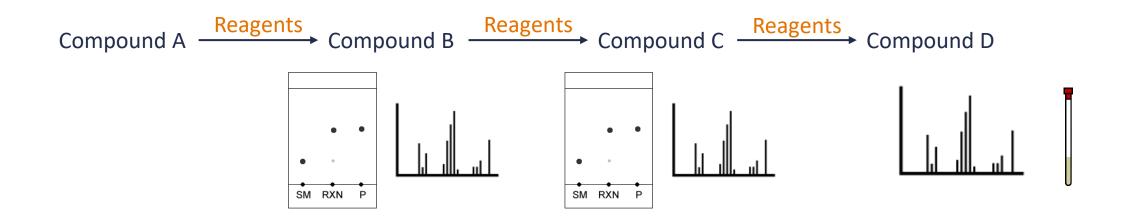
Why do we assess?



Rationales for assessing



Preliminary results from analysis of interviews conducted with 19 general chemistry instructors across different types of institutions

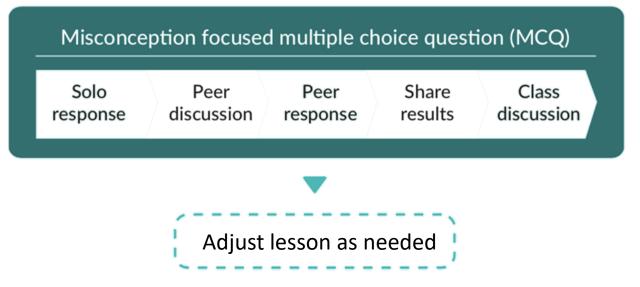


Earl, L. M., & Manitoba School Programs Division. (2006). Rethinking classroom assessment with purpose in mind: Assessment for learning, assessment as learning, assessment of learning. Manitoba https://www.harapnuik.org/?p=8475

Assessment FOR Learning aligns with our practices in the lab!

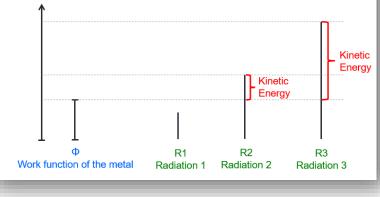
Assessment FOR Learning: Key influencing factors

- 1. Providing effective feedback to students.
- 2. Students' active involvement in their own learning.
- 3. Adjusting teaching to take into account the results of assessment.
- 4. Recognizing the profound influence of assessment on students' motivation and self-esteem both crucial influences on learning.
- 5. Ensuring students assess themselves and understand how to improve.


What is an example of assessment FOR learning?

Assessment FOR Learning Strategy: Peer Instruction

Peer Instruction Activity


10 Mazur, E. (1999). Peer instruction: A user's manual., Prentice–Hall, Upper Saddle River, NJ https://blog.teachcomputing.org/quick-read-4-peer-instruction/

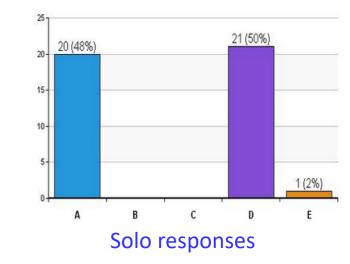
Think about it!

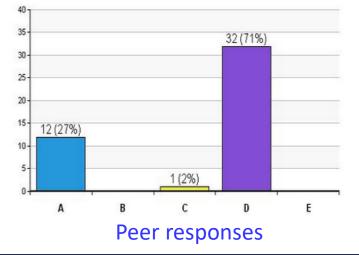
· Which radiation will lead to the fastest electron?

Energy

Clicker Question

- Which of the following metal has the highest work function?
 - A. Sodium
 - B. Zinc
 - C. Copper
 - D. Platinum
 - E. Calcium


199 nm 441 nm



Peer Instruction Activity

Misconception focused multiple choice question (MCQ)

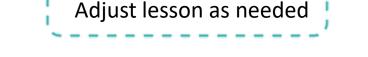
response discussion response results discussion	Solo	Peer	Peer	Share	Class
	response	discussion	response	results	discussion

Assessment FOR Learning Strategy: Peer Instruction

Peer Instruction Activity

response

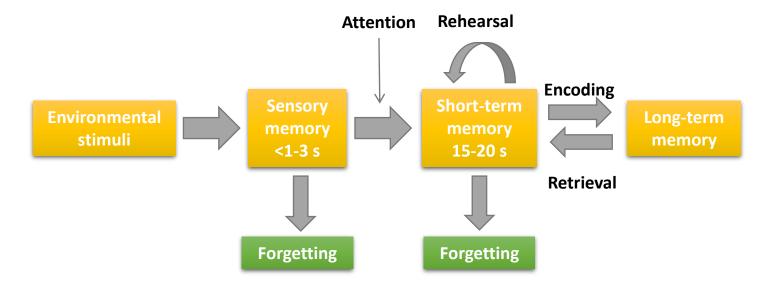
response


1. Providing feedback to students.

- 2. Students' active involvement
- 3. Adjusting teaching

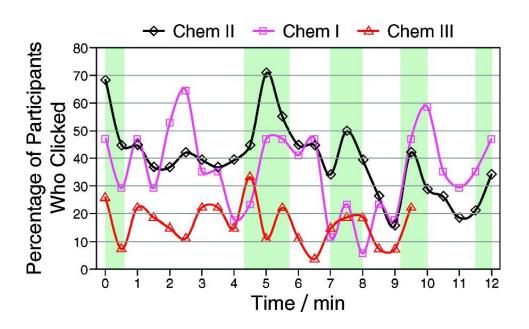
- Recognizing the influence of assessment on 4. students' motivation and self-esteem
- Ensuring students assess themselves and 5. understand how to improve.

What are the evidence supporting Peer Instruction?



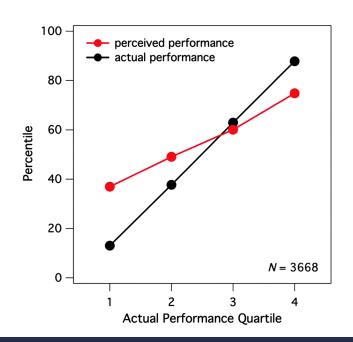
Peer Instruction is supported by extensive empirical evidence

- 1. Peer Instruction is effective in promoting students' conceptual understanding in a variety of STEM disciplines and courses across various institutions.
- 2. Peer Instruction can enhance both qualitative and quantitative problem-solving skills.
- 3. Peer Instruction increases retention and lowers failure rates.
- 4. Students have neutral to positive views on PI and seem to recognize its value over traditional teaching.


The human brain can only process small chunk of information at a time.

The human brain can only process small chunk of information at a time.

Within a 12 min lecture segment, students pay attention intermittently for about 7.5 min.



Bunce, D. M., Flens, E. A., & Neiles, K. Y. (2010). How long can students pay attention in class? A study of student attention decline using clickers. *Journal of Chemical Education*, 87(12), 1438-1443.

It is challenging for human to accurately evaluate their competence.

"Low-performing students tend to overestimate their own performance while high-performing students tend to underestimate their performance."

Pazicni, S., & Bauer, C. F. (2014). Characterizing illusions of competence in introductory chemistry students. *Chemistry Education* **17** *Research and Practice*, 15(1), 24-34.

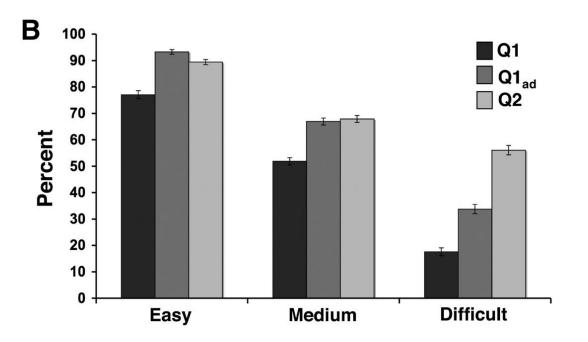
Individuals are likely to learn more when they learn with others than when they learn alone.

Meaningful learning is facilitated by articulating explanations.

How to effectively implement Peer Instruction?

Peer Instruction versus clicker question

Clicker question


Peer Instruction

Peer Instruction is NOT a clicker question!

Questions should be challenging enough to provoke interest and discussion. More difficult questions promote greatest growth.

21

Q1: One question was voted on individually

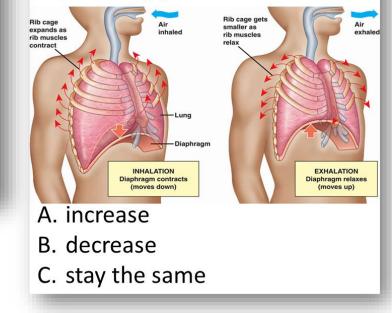
Q1_{ad}: the same question was voted on again after peer discussion

Q2: A second isomorphic question addressing the same concept as the first question was voted on individually

Recall

The volume of a gas is inversely proportional to the pressure of a gas is known as A. Avogadro's Law B. Ideal Gas Law C. Charles's Law

D. Boyle's Law


E. Dalton's Law

Algorithmic

A chamber has a pressure of 1.5 atm at a volume of 1.4 L. What is the pressure when the piston compresses the sample to a volume of 0.60 L? A. 3.5 L B. 0.64 L C. 1.8 L D. 1.6 L E. 0.29 L

Conceptual

The thoracic cavity expands during inhalation. In comparison to the atmosphere, would you expect lung pressure to

Algorithmic competence \neq Conceptual understanding

(a)

(b) (c)

(d)

Traditional Stoichiometry

(a)

For a mixture of 2 mol H₂ and 2 mol O₂ reacting according to the following equation, what is the limiting reagent, and how many moles of the excess reactant would remain after the reaction is completed?

$2H_2 + O_2 \rightarrow 2H_2O$ Limiting Reagent Excess Reactant Remaining $1 \mod O_2$ 02 \mathbf{O}_2 $1 \mod H_2$

(b) (c) H₂ $1 \mod O_2$ (d) H₂ $1 \mod H_2$ (e) No reaction occurs since the equation does not balance with 2 mol H₂ and 2 mol O₂.

Conceptual Stoichiometry

The reaction of element X (\Box) with element Y (O) is represented in the following diagram. Which of the equations best describes this reaction?

$$\begin{bmatrix} \circ \Box & \circ \\ \circ \\ \Box & \circ \\ \circ & \circ \\ \bullet &$$

Algorithmic competence ≠ Conceptual understanding

Table 1. Rate of Student Success						
	N	Conceptual Question	Traditional Question	Level of Significance		
Gas Laws						
All Students	285	31.23%	87.72%	≪0.001		
Upper 27% of class ^a	77	44.16%	96.10%	≪0.001		
Lower 27% of class ^a	77	14.29%	80.52%	≪0.001		
Stoichiometry						
All Students	323	11.46%	66.25%	≪0.001		
Upper 27% of class	87	20.69%	90.80%	≪0.001		
Lower 27% of class	87	3.45%	45.98%	≪0.001		

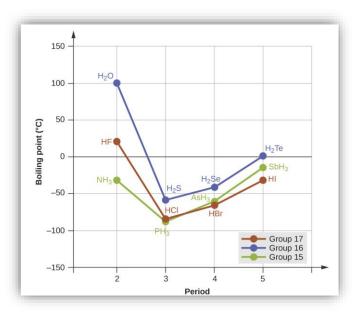
^a The upper and lower 27% of the class refer to overall performance on the entire 25item multiple-choice exam.

Probing for conceptual understanding

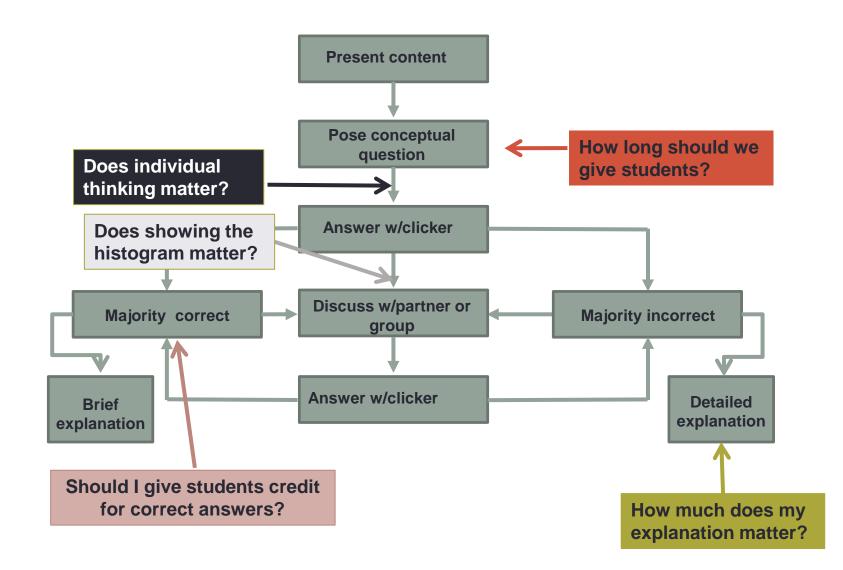
Venn Diagrams: Students compare, distinguish between

Graphical: Students estimate, examine, interpret

Pictorial: Interpret, explain, determine relationships


Perturbation of a system: Predict, relate, assess

Simulations


25

Others – categorization, distinguishing, prioritizing/ranking,

Voting methods

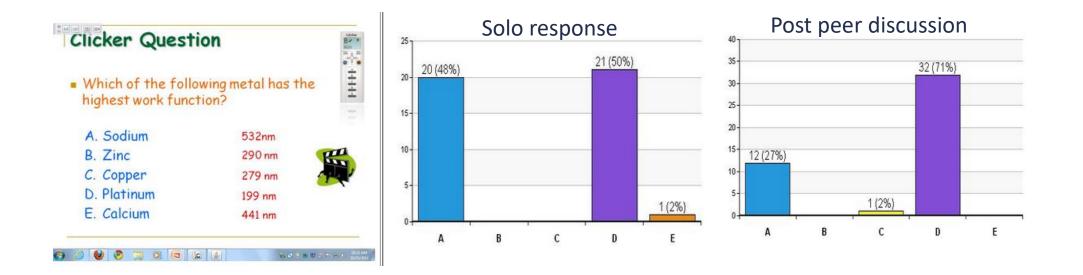
Learning Catalytics

What are the typical pitfalls with Peer Instruction?

Ensure alignment between your assessments classroom activities and learning goals!

Students' resistance

Explain why you are using this strategy on the syllabus, on day one, and several more times throughout the first third or so of the semester.



Students' resistance

Emphasize how much they learn when working together compare to when just listening to you.

Issues with fidelity of implementation

No one size fits all but adaptations should be purposeful and tested.

	Peer Instruction (N=195)
I used it basically as described by the developer.	16.9%
I made some relatively minor modifications	35.9%
I used some of the ideas, but made significant modifications	41.0%
I am not familiar enough with the developer's	6.0.0
description to answer this question	6.2%
All users	100%

32

courses. CBE—Life Sciences Education, 10(4), 394-405.

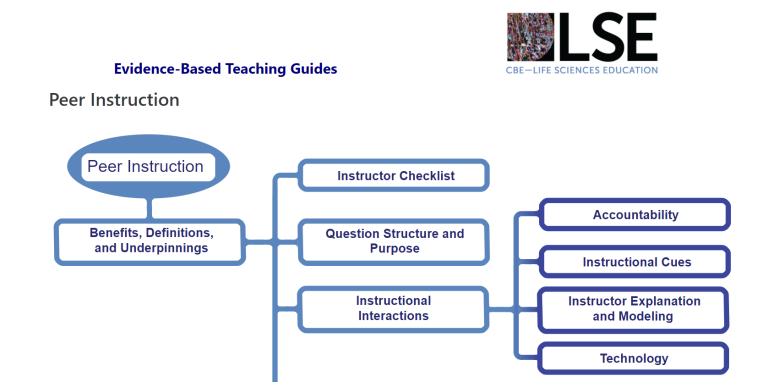
Henderson, C., & Dancy, M. H. (2009). Impact of physics education research on the teaching of introductory quantitative physics in the United States. *Physical Review Special Topics-Physics Education Research*, *5*(2), 020107. Andrews, T. M., Leonard, M. J., Colgrove, C. A., & Kalinowski, S. T. (2011). Active learning not associated with student learning in a random sample of college biology

Monitoring during peer discussion is essential!

- Enhance your understanding of student thinking
- Enhance student-instructor relationship especially in large classes
- It makes teaching a lot more fun!

Greg Nathan | University Communication | UNL

Gehrtz, J., Brantner, M., & Andrews, T. C. (2022). How are undergraduate STEM instructors leveraging student thinking?. International Journal of STEM Education, 9(1), 1-20.



https://www.auburn.edu/cosam/aulap/ https://news.unl.edu/newsrooms/today/article/biology-education-research-earns-couch-national-award/

What resources exist to help me implement Peer Instruction?

Details on Peer Instruction

https://lse.ascb.org/evidence-based-teaching-guides/peer-instruction/

Questions for Peer Instruction

• Aktiv: <u>www.aktiv.com</u>

• Vicente Talanquer – Chemical Thinking Interactives: <u>https://sites.google.com/site/ctinteractives/</u>

- Stacey Lowery Bretz' concept inventories: <u>https://sites.google.com/miamioh.edu/bretzsl/research/assessment-tools?authuser=0</u>
- PhET simulations translated in numerous languages: <u>https://phet.colorado.edu/</u>

Thank you!

Dr. Trisha Vickrey University of Nerbaska-Lincoln Dina Borysenko Milwaukee Area Technical College

mstains@virginia.edu

